

Variable Pump for closed loop circuit

Linde Hydraulics move the world

Linde pioneered mobile hydrostatic transmissions.

Over the last 40 years Linde have fitted almost 2 million vehicles in the fields of:

- Earthmoving and Construction Machinery
- Agricultural and Forestry Equipment
- Municipal Vehicles
- Materials Handling Vehicles

with hydrostatic drive and gear units. By using this concept on its own forklift trucks, Linde have become the world leader in materials handling technology.

Through this 'in house know how' Linde as the system supplier can offer you a complete carefree package:

- From initial discussions to optimum solution
- Technical support throughout the project
- World-wide after sales service

This together with our understanding of partnership, ensures your guarantee of:

- High level technology
- Durable components
- Cost effectiveness

CONTENTS	Page
1. Characteristics and technical data	2
2. Controls:	
a) Mechanical-hydraulic (M1) (cam plate feature)	4
b) Electro-hydraulic (E1 and E2)	6
c) Hydraulic (H1)	8
3. Boost pumps	10
4. Auxilliary pumps (PTO)	12
5. Tandem and Multiple Pumps	14
6. Main dimensions	15
7. Pressure fluids and Filtration	19
8. Typical applications	20

1. CHARACTERISTICS AND TECHNICAL DATA

Features

- Compact design with high power density
- Reliable and durable
- Low noise
- High efficiency
- Superior quality

Sizes

• 55, 75, 105 and 135 cm³/rev

Design Characteristics

- Axial piston pump, swash plate design
- Swash angle 21°
- Precise and robust control
- Integral boost pump with cold start valve
- Integrated high pressure relief and make-up valves
- Integrated low pressure valves for boost, servo and cooler circuits
- Fitted replaceable cartridge filter
- SAE 2 bolt mounting flange with ANSI splined shaft
- SAE A, B, B-B and C rear flange (PTO)
- Tandem and multiple pump options

Technical Data

Rated Sizes	Nominal displacement	[cm³/rev]	55	75	105	135	
	Maximum displacement	[cm³/rev]	54.8	75.9	105.0	135.6	
Speed	Max. speed, continuous	[rev/min]	3300	3100	2900	2700	
	Max. speed, intermittent *1	[rev/min]	3700	3500	3200	2900	
Pressure	Continuous pressure	[bar]		25	50		
	Max. operational pressure *2	[bar]		42	20		
	Max. intermittent pressure	[bar]		50	00		
	Permissible housing pressure (abs	pressure (absolute) [bar] 2.5					
Torque	Continuous input torque *3	[Nm]	220	305	420	540	
	Max. input torque *4	[Nm]	350	485	670	870	
Power	Continuous power *5	[kW]	75	98	127	153	
	Max. power *6	[kW]	121	157	204	245	
Shaft loads	Axial input force *7	[N]		20	00		
	Axial output force *7	[N]		2000			
	Radial *7	[N]		on re	quest		
Temperature	Permissible housing temperature	[°C]	90				
Weights	With mech-hydraulic servo *8	[kg]	42	47	58	72	
	Max. moment of inertia *9	[kgm² x 10-2]	0.30	0.84	1.49	2.20	
Main dimensions				see p	age 6		

*1) Higher speeds on request
*2) Corresponds to setting of pressure relief valve, other setting possible
*3) At max. continuous pressure

*4) At max, pressure and 19 bar boost pressure
*5) At max, continuous speed and continuous pressure
*6) At max, speed, max, pressure and 19 bar boost pressure
*7) Definition: see page 6

*8) Including boost pump: Additional weight: with Hydraulic control 2 kg and with Electro-hydraulic control 4kg.
*9) Includes boost pump

• Hydraulic = H1

Product Code

HPV		-02						
	Rated size: • 55 • 75 • 105 • 135		Shaft rotation • Right hand = R, Left hand = L	Control • Mechanical - hydraulic = M1 • Electro-hydraulic (2 solenoids) = E1 (12 or 24V) • Electro-hydraulic (3 solenoids) = E2 (12 or 24V)	Pressure cut-off valve • without = X • with = P • with setting value	Setting of high pressure relief valve	Boost pump and suction • without = X • internal = i • external = e • hybrid = h	PTO flange type • SAE A = A • SAE B = B • SAE B-B = B-B • SAE C = C

Examples

HPV 105-02 R E2 12 X 420 i C	 Rated size 105 cm³/rev Right hand rotation Electro-hydraulic control E2 with 12V solenoids No pressure cut-off High pressure relief valve setting 420 bar Boost pump with internal suction PTO flange SAE-C
HPV 135-02 L H1 P400 420 e A	 Rated size 135 cm³/rev Left hand rotation Hydraulic control H1 With pressure cut-off at 400 bar High pressure relief valve setting 420 bar Boost pump with external suction PTO flange SAE-A

2. CONTROLS

2a. Mechanical-hydraulic Control

This contol can be supplied with or without pressure cut-off

Circuit Diagram and Function

By turning the control lever the pump flow rate and direction of flow are controlled via a cam plate with progressive characteristic.

Controllers with pressure cut-off reduce pump flow when the cut-off pressure is reached. As system pressure is maintained, only a small quantity of residential fluid flows through the high pressure valve thus optimising power consumption and system thermal balance.

Flow Direction

The flow direction of the fluid is dependant upon

- the pump direction of rotation
- the over centre direction of the swash plate

Shaf (v Cam lever direction	t rotation view on Z)		
		Þ	(S)*
	2 0	(S)*	(P)*

The table shows the flow correlation:

Technical Data

Rated size			For all unit sizes without pressure cut-off	For all unit sizes with pressure cut-off
Control force	*1	[N]	17	13
	Max. intermittent	[N]	500	230
Control torque		[Nm]	1.2	≤1
Control angle	Neutral range	± [°]	± 4	± 4
	To end position	± [°]	± 48	± 30
Response time	*2 Minimum	[sec]	0.5	0.5
Reset	Principle		Centred with external force	Self-centred without external force
	Torque	[Nm]	1.2	0.7

*1) With long lever (radius r without / with pressure cut-off = 70/75 mm)
 *2) Other response times possible with special restrictors

Displacement Relative to Control Angle

2b. Electro-hydraulic Control

This control can be supplied with 2 or 3 solenoids. The 2 solenoid version can also be fitted with pressure cut-off.

Circuit Diagram and Function

By means of a suitable controller (see Linde brochure "Controls Programme") the pump flow rate and flow direction are controlled via the energised proportional solenoid.

Controllers with pressure cut-off reduce pump flow when the cut-off pressure is reached. As system pressure is maintained only a small quantity of residual fluid flows through the high pressure valve thus optimising power consumption and system thermal balance Electro-hydraulic control E1 has 2 proportional solenoids and is suitable for general application.

Electro-hydraulic control E2 is fitted with an additional switching solenoid and complies to Linde Standards.

It's use is recommended for mobile applications where specific criteria have to be met in the event of electrical faults occuring. In these cases (e.g. cable break or false signals) the additional **third solenoid** ensures the pump swash is returned to neutral slowly and the vehicle is then brought to a stop in a smooth and jerk free manner.

P, S High pressure ports
A Pressure port, boost pump
B Suction port, boost pump

F Feed port, boost & controlX, Y, Z Test port, control pressureMs, Mp Test ports, high pressure

L, U Drain ports T Vent ports My, Mz Proportional solenoids connectors Mx Switching solenoid connector

Note for left hand rotation: A Suction port, boost pump B Pressure port, boost pump

Flow Direction

The flow direction of the fluid is dependant upon

- the pump direction of rotation
- the over centre direction of the swash plate

The table shows the flow correlation:

Technical Data

Rated size			For all unit sizes with and without pressure cut-off		
Connector type	With E1 control		Hirschmann		
	With E2 control		AMP-Junior-Timer, 2-pin		
Rated voltage =		[V]	12	24	
Limiting voltage					
Voltage type			Dire	ct (d.c.)	
Power consumption		[W]	15.6		
Rated current =		[mA]	1,300	650	
Limiting current					
Control current	Swash begin	[mA]	350 ± 10	175 ± 10	
	Swash end	[mA]	720	360	
Relative duty cycle		[%]		100	
Protection class			IP 6K	6K, Part 9	
Contol types	With Linde transd	ucers:	100 Hz	Rectangle,	
	digital via Pulse W	/idth	Pulse duty ratio variable over control range		
	Alternative option		Direct current (with or without superimposed dither		
	Analogue control		signal for stability and reducing hysterisis effects dithe		
	Ŭ		± 125 mA, 32-40 Hz, puls	se duty ratio 1:1)	
Response time *	Minimum	[secs]		0.5	

* Other response times possible with special restrictors.

Displacement Relative to Control Current

7

2c. Hydraulic Control

This control can be supplied with or without pressure cut-off

Circuit Diagram and Function

By means of a suitable pilot pressure control valve (see Linde Brochure "Controls Programme") the pump flow rate and flow direction are controlled.

Controllers with pressure cut-off reduce pump flow when the cut-off pressure is reached. As system pressure is maintained, only a small quantity of residual fluid flows through the high pressure valve thus optimising power consumption and system thermal balance.

P. S High pressure ports
A Pressure port, boost pump
B Suction port, boost pump

F Feed port, boost & controlX Test port, control pressureMs, Mp Test ports, high pressure

L, U Drain ports
 T Vent port
 Y, Z Pilot (control) pressure ports

Note for left hand rotation: A Suction port, boost pump B Pressure port, boost pump

Flow Direction

The flow direction of the fluid is dependant upon

- the pump direction of rotation
- the over centre direction of the swash plate

Shaf (v Pilot pressure port	t rotation view on Z)		
	Y	(P)*	(s)*
	Z	(S)*	(P)*

The table shows the flow correlation:

Technical Data

Rated size			For all unit sizes with and without pressure cut-off
Control pressure range	Differential pressure [Y-Z]	[bar]	2-8
Permissible pressure at Y or Z	Maximum	[bar]	30
Response time *	Minimum	[sec]	0.5

* Other response times possible with special restrictors.

Displacement Relative to Pilot Pressure

3. BOOST PUMPS

Boost pump with cold start valve

Technical Description

The boost pump is of the internal gear tooth type and supplies

- Boost flow (make-up)
- Control flow and
- Cooling flow

The boost and cooling circuits are protected by pressure relief valves (low pressure and cold start valves)

Depending on the application, suction can be either

- internal
- external or
- hybrid (simultaneous internal and external suction)

Technical Data

Rated size			55	75	105	135
Max. displacement		[cm³/rev]	16		22.5	
Setting values	Boost pressure	[bar]	19			
	Cold start valve	[bar]		2	4	
Pressure	Maximum pressure *	[bar]	40			

* Observe max. permissible rated pressures for filter and cooler.

Circuit Diagram (example)

Boost pump with internal suction

- HPV-02 pump with mechanical hydraulic control
- HMV-02 motor with Electro-hydraulic Flip-Flop control
- Oil Cooler in low pressure circuit

Boost pump with external suction

- HPV-02 pump with mechanical hydraulic control
- HMV-02 motor with Electro-hydraulic Flip-Flop control
- Oil Cooler in return pressure circuit

4. AUXILIARY PUMPS (PTO)

Technical Description

Additional drives, for example supply or service pumps can be driven from the splined through shaft. The power take off (PTO) options available are

- SAE A
- SAE B
- SAE B-B or
- SAE C
- Mounting flanges

Main pumps are supplied as standard with SAE A type PTO and require no additional intermediate flange or coupling. For optional **SAE B, B-B** and **C** type PTO's then intermediate mounting flanges and muff couplings are available.

The additional drive (PTO) options can be supplied with or without the boost pump.

Technical Data

Power take off with boost pump

	Rated size		55	75	105	135
Transfer Torque						
	Continuous [Nm]			7	5	
SAE A	Max.	[Nm]	107			
	Continuous	[Nm]	175			
SAE D	Max.	[Nm]	250			
	Continuous	[Nm]	175			
SAE D-D	Max.	[Nm]	250			
SAE C	Continuous	[Nm]	175			
	Max.	[Nm]	250			

Power take off without boost pump

	Rated size	55	75	105	135
Transfer Torque					
Continuous	[Nm]	220	305	420	540
Max.	[Nm]	350	485	670	870

Flange Dimensions

PTO with boost pump SAE A

PTO with boost pump SAE B, B-B and C

Flange dimensions for PTO with boost pump

Rated Size		For all sizes				
Flange Profile		SAE A	SAE B	SAE B-B	SAE C	
		2 hole				
Internal spline profile Z			ANSI I	ANSI B92.1,		
			12/24 spline pitch			
		9 Teeth	13 Teeth	15 Teeth	14 Teeth	
D1 Spigot pilot diameter	[mm]	82.55	101.6		127	
D2 Thread size	[mm]	M 10	M 12		M 16	
L1 Hole distance	[mm]	106.4	146		181	
L2 Adapter length	[mm]	7	11		13	
L3 Flange length	[mm]	_	55		72	

Flange dimensions for PTO without boost pump

Rated size		55	75	105	135		
Drive shaft profile Z		ANSI B92.1,					
			16/32 spline pitch				
		15 Teeth	18 Teeth	19 Teeth	21 Teeth		
D1	[mm]	40	42	48	52		
D2 Spigot pilot diameter	[mm]	82.55					
D3	[mm]	88					
D4	[mm]	M 10					
D5 Bearing clearance, max.	[mm]	30	35	38	43		
L1	[mm]	1.5					
L2 Adapter length	[mm]	7					
L3	[mm]	9					
L4 Minimum distance	[mm]	35	39	33	35		
L5 Usable spline length	[mm]	14	18	19	20		
L6 Distance to bearing	[mm]	51	57.5	53	55.9		
L7 Bearing clearance, min.	[mm]	3	3	3	4		
L8 Hole distance	[mm]	106.4 (2 bolt)					

5. TANDEM AND MULTIPLE PUMPS

Tandem and multiple pumps are created by the "series adding on" of single HPV -02 units.

Combinations Available

Rated size back pump	front 55 ump	75	105	135
55	yes	yes	yes	yes
75	-	yes	yes	yes
105	-	-	yes	yes
135	-	-	-	yes

Transfer Torques

6. MAIN DIMENSIONS

HPV-02 with Mechanical-hydraulic Control

Rated siz	e:e	55	75	105	135		
Flange Profile F		Mounting flange: 2 hole					
		SA	SAE D				
Shaft Profile W		Ansi B92.1					
		16/32 spline pitch					
		2	1	23	27		
		lee	eth	leeth	leeth		
D1 [mm]		12	27		152.4		
B1 [mm]		18	31		228.6		
B2 [mm]		101	1	16	141		
B3 [mm]		101	1.	16	141		
B4 [mm]		192	2	16	219		
L1 [mm]		225	242	267	288		
L2 [mm]		282	304	329	350		
L3 [mm]	[335	359	385	425		
L4 [mm]	No PCO	48					
	With PCO	52					
L5 [mm]	L5 [mm] No PCO		70				
	With PCO		75				
H1 [mm]		88	93	99	106		
H2 [mm]		95	103	105	112		
H3 [mm]	No PCO	184	188	193	198		
	With PCO	220	224	229	234		
Р		SAE 3/4"	SAE 1"		SAE 11/4"		
S		SAE 3/4" SAE 1" SAE			SAE 11/4"		
Α		M26x1.5					
В		M26x1.5					
L		M22x1.5					
U		M22x1.5					
F		M22x1.5					
X		M14x1.5					
Мр	Мр		M14x1.5				
Ms			M14	x1.5			
L1			M22	x1.5			
L2			M22	x1.5			
т		M22x1.5					
Y		M14x1.5					
Z		M14x1.5					

All metric threaded ports to DIN3852 Threaded ports to ISO 6149 on request

HPV-02 with Electro-hydraulic Control

Rate	d siz	е	55	75	105	135	
Flan	ge Pr	ofile F	Mounting flange: 2 hole		le		
		SA	SAE D				
Shaft Profile W		Ansi B92.1					
			16/32 spline pitch				
			2 Tee	1 eth	23 Teeth	27 Teeth	
D1	mm]		12	127			
B1	mm]		18	31		228.6	
B2	mm]		101	1.	16	141	
B3	mm]		101	1.	16	141	
B4	mm]		192	2	16	219	
L1	mm]		225	242	267	288	
L2	mm]		282	304	329	350	
L3	mm]		335	359	385	425	
H1	mm]		88	93	99	106	
H2	mm]		95	103	105	112	
H4	mm]	No PCO	159	164	168	173	
		With PCO	195	200	204	209	
Р		SAE 3/4"	SA	Ξ1"	SAE 11/4"		
S		SAE 3/4" SAE 1" SAE 1 1/4"					
Α			M26	x1.5			
В			M26	x1.5			
L		M22x1.5					
U	J		M22x1.5				
F			M22x1.5				
X			M14x1.5				
Мр			M14x1.5				
Ms			M14x1.5				
Т				M22	x1.5		
Y			M14x1.5				
Z			M14	x1.5			
Мх	E1 (connector		-	_		
	E2	connector	AN	1P-Junior	-Timer, 2	pin	
Му	E1 (connector		Hirsch	nmann		
	E2	connector	AN	1P-Junior	-Timer, 2	pin	
Mz	E1 (connector		Hirsch	nmann		
	E2	connector	AN	1P-Junior	-Timer, 2	pin	

(É **(** U) Ms B Mp Β3 В B4

All metric threaded ports to DIN3852 Threaded ports to ISO 6149 on request

HPV-02 with Hydraulic Control

Rated size	55	75	105	135		
Flange Profile F	Mounting flange: 2 hole					
	SA	SAE C				
Shaft Profile W	An	Ansi B92.1				
	16,	16/32 spline pitch				
	2 Tee	21 Teeth		27 Teeth		
D1 [mm]	12	27		152.4		
B1 [mm]	18	31		228.6		
B2 [mm]	101	1.	16	141		
B3 [mm]	101	1.	16	141		
B4 [mm]	192	2	16	219		
L1 [mm]	225	242	267	288		
L2 [mm]	282	304	329	350		
L3 [mm]	335	359	385	425		
H1 [mm]	88	93	99	106		
H2 [mm]	95	103	105	112		
H3 [mm] No PCO	149	154	158	163		
With PCO	185	190	194	199		
Р	SAE 3/4"	SA	Ξ1"	SAE 11/4"		
S	SAE 3/4"	SAE 3/4" SAE 1" SA				
Α	M26x1.5					
В	M26x1.5					
L	M22x1.5					
U	M22x1.5					
F	M22x1.5					
X	M14x1.5					
Мр	M14x1.5					
Ms	M14x1.5					
т	M22x1.5					
Y	M14x1.5					
Z	M14x1.5					

All metric threaded ports to DIN3852 Threaded ports to ISO 6149 on request

HPV-02 Tandem and Multiple Pumps

Rated size front pump	d size back pump	55	75	105	135
55	L1 [mm]	48	_	_	_
	L2 [mm]	498	-	_	_
	L3 [mm]	555	_	_	_
	L4 [mm]	611	_	_	_
75	L1 [mm]	43	43	_	_
	L2 [mm]	510	527	_	_
	L3 [mm]	567	589	_	_
	L4 [mm]	623	645	_	_
105	L1 [mm]	38	38	38	_
	L2 [mm]	530	547	572	_
	L3 [mm]	587	609	634	_
	L4 [mm]	643	665	690	_
135	L1 [mm]	31	31	31	31
	L2 [mm]	544	561	586	607
	L3 [mm]	601	623	648	669
	L4 [mm]	676	698	723	744

7. PRESSURE FLUIDS AND FILTRATION

Permitted Pressure Fluids

- Mineral oil HLP to DIN 51524
- Biodegradeable fluids upon request
- Other pressure fluids upon request

Technical Data

Pressure Fluid Temperature Range	[°C]	-20 to +90
Working Viscosity Range	$[mm^{2}/s] = [cSt]$	10 to 80
Optimum Working Viscosity	$[mm^{2}/s] = [cSt]$	15 to 30
Max. Viscosity (short time start up)	[mm²/s] = [cSt]	1000

Viscosity recommendations

Working temperature [°C]	Viscosity class [mm²/s] = [cSt] at 40°
Circa 30 to 40	22
Circa 60 to 80	46 or 68

Linde recommend using only pressure fluids which are confirmed by the producer as suitable for use in high pressure hydraulic installations. For the correct choice of suitable pressure fluid it is necessary to know the working temperature in the hydraulic circuit (closed loop). The pressure fluid chosen must allow the working viscosity to be within the optimum viscosity range (refer to above table).

Attention!

Due to pressure and speed influences the leakage fluid temperature is always higher than the circuit temperature. The temperture must not exceed 90°C in any part of the system. Under special circumstances, if the stated conditions cannot be observed then please consult Linde.

Filtration

In order to guarantee proper functions and efficiency of the hydraulic pumps the purity of the pressure fluid over the entire operating period, must comply to at least class 18/13 according to ISO 4406. With modern filtration technology, however, much better values can be achieved which contributes significantly to extending the life and durability of the hydraulic pumps and complete system.

8. TYPICAL APPLICATIONS

Linde Hydraulics Direct Lines

You can contact us

- **By Telephone** (0 60 21) 99-0 (Switchboard)
- **By Fax** (0 60 21) 99-1579
- By email info.hydraulics@linde-fh.de
- By internet http://www.linde.de/linde-hydraulik
- By Post
 Linde AG
 Werksgruppe Flurförderzeuge
 und Hydraulik
 Schweinheimer Str. 34
 D-63743 Aschaffenburg
 Postfach 62
 D-63736 Aschaffenburg

Linde World Wide

UK

Linde Hydraulics Limited 7 Nuffield Way Abingdon, Oxon OX14 1RJ Tel: 01235 522828 Fax: 01235 554036

Italy

Linde Güldner Italiana SPA Via Luguzzone I-21020 Buguggiate (VA) Tel: (39) 03 32 - 877 111 Fax: (39) 03 32 - 877 301

Australia

Hydraulic Specialists Australia Pty. Ltd 2/20 Rimfire Drive AUS-Hallam Victoria 3803 Tel: (03) 9796 5433 Fax: (03) 9796 4955

India

SAI India Ltd 45/4, IQBAL MANZIL, 2nd Floor Promenade Road BANGALORE - 560 042 Tel: (91) 80 - 55 67 914 / 53 01 901 Fax: (91) 80 - 55 44 758

USA

Linde Hydraulics Corporation P.O. Box 82 USA-Canfield, Ohio 44 406 Tel: (1) 216 - 5 33 68 01 Fax: (1) 216 - 5 33 20 91

Spain

Linde Carretillas e Hidraulica S.A. Ctra. Madrid-Barcelona (N 2) E-08780 Palleja (Barcelona) Tel: (34) 93 66 32 32 Fax: (34) 93 66 32 77

South Africa

Ernest Lowe Hydrotube Pty Ltd P.O. Box 6357 SA-Dunswart 1508 Tel: (27) 11 894 4281 Fax: (27) 11 894 3267

China

Beijing Gold Wheel Special Vehicles Co. Linde Hydraulic Division Technical Support Centre No. 1 Beishatan Deshengmen Wai VRC-Beijing 100083 Tel: (86) 10-64 88 25 78 Fax: (86) 10-64 88 25 77